Preparing Cu2O/Al2O3 Coating via an Electrochemical Method for the Degradation of Methyl Orange in the Process of Catalytic Wet Hydrogen Peroxide Oxidation

Author:

Liu De-bo,Zhang Ping,Wang Jian

Abstract

To improve the catalytic efficiency and decrease the reaction temperature of wet air oxidation technology, a Cu2O/Al2O3 coating was prepared on the surface of aluminium alloys by anodizing technology, and subsequent heating treatment. Then, the Cu2O/Al2O3 coating and 3 wt.% H2O2 was used to degrade methyl orange. The influence of the coating’s microstructure, crystalline component on the degradation rate of the methyl orange was studied. The microstructure of the coating was observed by scanning electron microscope. Results proved that the coating was composed of micropores, and Cu2O was evenly dispersed on the surface and pores in the Al2O3 coating. X-ray diffraction pattern analysis demonstrated Cu2O and Al2O3 characteristic peaks were found after the coating was treated at 300 °C, showing that amorphous Cu2O and Al2O3 were transformed into crystalline oxide. A UV-vis spectrophotometer was used to measure the absorbance of methyl orange, and it was found that the maximum absorption wavelength of methyl orange is 460 nm. At that wavelength, the suitable degradation condition of methyl orange was studied, and results showed that when electrochemical deposition time was 30 min and catalyst dosage was 8 g, the degradation rate of methyl orange could reach 92% at 25 °C for 120 min. Furthermore, when the catalyst was reused 9 times, the degradation rate still reached 75%. Based on the above results, a kinetic equation between the degradation rate of methyl orange and catalyst dosage was derived. The microstructure and crystalline component of the catalyst after different reuse times were characterized, and results showed that the catalytic efficiency of the Cu2O/Al2O3 coating decreased with a decrease in the coating’s specific surface area and the ratio of Cu2O in the coating.

Funder

Zhengzhou Key Laboratory of Fiber Reinforced Polymer Composites

Science and Technology Research Project of Henan Provincial Department of Science and Technology

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3