Formulation of Bismuth (Bi2O3) and Cerium Oxides (CeO2) Nanosheets for Boosted Visible Light Degradation of Methyl Orange and Methylene Blue Dyes in Water

Author:

Shahzad Khurram,Fernandez-Garcia Javier,Khan Muhammad ImranORCID,Shanableh Abdallah,Khan Naseem Ahmad,ur Rehman Aziz

Abstract

Annealing of periodic mesoporous organosilica supported with bismuth (Bi@PMOS) and cerium (Ce@PMOS) nanoparticles was carried out to derive bismuth oxide (Bi2O3) and cerium oxide (CeO2) nanosheets. The hydrothermal sol-gel method was used to synthesize hexagonal Bi@PMOS and Ce@PMOS. These PMOS provided an opportunity for bismuth and cerium to retain a hexagonal configuration alongside their traditional crystalline phases (tetragonal and cubic) in Bi2O3 and CeO2 nanosheets. All produced materials were found to be dynamic under sunlight irradiation for the degradation of methylene blue (MB) and methyl orange (MO). However, the Bi2O3 and CeO2 nanosheets showed better potential and photo-catalytic performances than Bi@PMOS and Ce@PMOS due to the presence of the unique blend of crystalline phases. The synthesized Bi@PMOS, Ce@PMOS, Bi2O3, and CeO2 were structurally characterized by FTIR and XRD techniques. These showed characteristic vibrations of successfully loaded bismuth and cerium with hexagonal symmetry. EDX results confirmed the elemental detection of bismuth and cerium, while SEM images revealed the nanosheets in the synthesized materials. The optical response and detection of reactive species were carried out by photoluminescence (PL) and showed emissions at 700 nm. The PL data were also used to calculate band gaps of 3.72, 3.70, 3.35, and 2.88 eV for Ce@PMOS, Bi@PMOS, CeO2, and Bi2O3, respectively. A UV/visible spectrophotometer scanned the photocatalytic competences of the synthesized nanomaterials through the degradation of MB and MO dyes. Then, 10 mg of Bi@PMOS and Ce@PMOS degraded 15 mg and 8.4 mg of MB and 10.8 mg and 8 mg of MO, respectively, in 20 mg/L solutions. However, equivalent quantities of Bi2O3 and CeO2 (10 mg of each) exhibited more efficient photocatalysis of the 20 mg/L solutions of MB and MO, degrading 18.4 mg and 15.4 mg, and 12.4 mg and 17 mg, respectively, in only 1 h. The Bi2O3 and CeO2 photocatalysts were regenerated and their photodegradation results were also recovered. Bi2O3 and CeO2 showed only 10% and 8% (for MB), and 8% and 10% (for MO) decline in catalytic efficiency, respectively, even after four consecutive recycles. These results demonstrate that these materials are dynamic, long-lasting photocatalysts for the rapid degradation of azo dyes in contaminated water.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3