Abstract
Semiconductor-based heterogeneous photocatalytic oxidation processes have received considerable attention for the remediation of toxic pollutants. Herein, InVO4/NiFe2O4 nanocomposites were synthesized using a facile hydrothermal technique. Furthermore, various characterization results revealed the successful loading of NiFe2O4 nanoplates over InVO4 nanosheets, thereby signifying the formation of a heterostructure. The performance of the synthesized photocatalyst was tested for tetracycline (TC) antibiotic removal. The optimized InVO4/NiFe2O4 nanocomposite exhibits maximum photodegradation of TC molecules (96.68%) in 96 min; this is approximately 6.47 and 4.93 times higher than that observed when using NiFe2O4 and InVO4, respectively. The strong interaction between the InVO4 nanosheets and NiFe2O4 nanoplates can improve the visible-light absorption and hinder the recombination of charge carriers, further enhancing the photocatalytic performance. Moreover, hydroxyl radicals play a crucial role in the photodegradation of TC antibiotics.
Funder
Korean Government’s National Research Foundation
Subject
Physical and Theoretical Chemistry,Catalysis,General Environmental Science
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献