Uganda’s Hydropower System Resilience to Extreme Climate Variability

Author:

Mujjuni Francis1ORCID,Betts Thomas1,Blanchard Richard1ORCID

Affiliation:

1. Centre for Renewable Energy Systems Technology (CREST), Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Epinal Way, Loughborough University, Loughborough LE11 3TU, UK

Abstract

This study was motivated by the high reliance on hydropower plants (HPPs) developed and planned along the river Nile and the fact that drought events are the most imminent and drastic threats to Uganda’s power production. The study aimed to assess HPPs’ resilience and the effectiveness of selected adaptation measures. The climate, land, energy, and water system (CLEWs) framework was employed to assess resilience amidst competing water demands and stringent environmental flow requirements. Under extreme dry conditions, power generation could plummet by 91% over the next 40 years, which translates into an annual per capita consumption of 19 kWh, barely sufficient to sustain a decent socioeconomic livelihood. During arid conditions, climate models predicted an increase in streamflow with increasing radiative forcing. Restricting the ecological flow to 150 m3/s could improve generation by 207%. In addition, if planned power plants were to be built 5 years ahead of schedule, the normalized mean annual plant production could increase by 23%. In contrast, increasing reservoir volumes for planned power plants will have no significant impact on generation. The path to HPP resilience could entail a combination of diversifying the generation mix, installing generators with varying capacities, and incorporating adjustable orifices on reservoirs.

Publisher

MDPI AG

Subject

Atmospheric Science

Reference72 articles.

1. Ministry of Water and Environment (2015). Uganda National Climate Change Policy, Ministry of Water and Environment.

2. Federal Ministry for Economic Cooperation and Development (BMZ), and Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) (2020). Climate Risk Profile: Uganda, GIZ.

3. The Government of the Republic of Uganda (2017). National Irrigation Policy Agricultural Transformation Through Irrigation Development.

4. WBG, GFDRR, and ACP-EU (2019). Disaster Risk Profile Uganda, WBG.

5. Department of Disaster Preparedness and Management (2011). The National Policy For Disaster Preparedness and Management.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3