Affiliation:
1. Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Catania, Osservatorio Etneo, Piazza Roma 2, 95125 Catania, Italy
2. Department of Electrical, Electronic and Computer Engineering, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
Abstract
The global, near-real-time monitoring of volcano thermal activity has become feasible through thermal infrared sensors on various satellite platforms, which enable accurate estimations of volcanic emissions. Specifically, these sensors facilitate reliable estimation of Volcanic Radiative Power (VRP), representing the heat radiated during volcanic activity. A critical factor influencing VRP estimates is the identification of hotspots in satellite imagery, typically based on intensity. Different satellite sensors employ unique algorithms due to their distinct characteristics. Integrating data from multiple satellite sources, each with different spatial and spectral resolutions, offers a more comprehensive analysis than using individual data sources alone. We introduce an innovative Remote Sensing Data Fusion (RSDF) algorithm, developed within a Cloud Computing environment that provides scalable, on-demand computing resources and services via the internet, to monitor VRP locally using data from various multispectral satellite sensors: the polar-orbiting Moderate Resolution Imaging Spectroradiometer (MODIS), the Sea and Land Surface Temperature Radiometer (SLSTR), and the Visible Infrared Imaging Radiometer Suite (VIIRS), along with the geostationary Spinning Enhanced Visible and InfraRed Imager (SEVIRI). We describe and demonstrate the operation of this algorithm through the analysis of recent eruptive activities at the Etna and Stromboli volcanoes. The RSDF algorithm, leveraging both spatial and intensity features, demonstrates heightened sensitivity in detecting high-temperature volcanic features, thereby improving VRP monitoring compared to conventional pre-processed products available online. The overall accuracy increased significantly, with the omission rate dropping from 75.5% to 3.7% and the false detection rate decreasing from 11.0% to 4.3%. The proposed multi-sensor approach markedly enhances the ability to monitor and analyze volcanic activity.