Advancing Volcanic Activity Monitoring: A Near-Real-Time Approach with Remote Sensing Data Fusion for Radiative Power Estimation

Author:

Di Bella Giovanni Salvatore1,Corradino Claudia1ORCID,Cariello Simona12ORCID,Torrisi Federica1ORCID,Del Negro Ciro1ORCID

Affiliation:

1. Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Catania, Osservatorio Etneo, Piazza Roma 2, 95125 Catania, Italy

2. Department of Electrical, Electronic and Computer Engineering, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy

Abstract

The global, near-real-time monitoring of volcano thermal activity has become feasible through thermal infrared sensors on various satellite platforms, which enable accurate estimations of volcanic emissions. Specifically, these sensors facilitate reliable estimation of Volcanic Radiative Power (VRP), representing the heat radiated during volcanic activity. A critical factor influencing VRP estimates is the identification of hotspots in satellite imagery, typically based on intensity. Different satellite sensors employ unique algorithms due to their distinct characteristics. Integrating data from multiple satellite sources, each with different spatial and spectral resolutions, offers a more comprehensive analysis than using individual data sources alone. We introduce an innovative Remote Sensing Data Fusion (RSDF) algorithm, developed within a Cloud Computing environment that provides scalable, on-demand computing resources and services via the internet, to monitor VRP locally using data from various multispectral satellite sensors: the polar-orbiting Moderate Resolution Imaging Spectroradiometer (MODIS), the Sea and Land Surface Temperature Radiometer (SLSTR), and the Visible Infrared Imaging Radiometer Suite (VIIRS), along with the geostationary Spinning Enhanced Visible and InfraRed Imager (SEVIRI). We describe and demonstrate the operation of this algorithm through the analysis of recent eruptive activities at the Etna and Stromboli volcanoes. The RSDF algorithm, leveraging both spatial and intensity features, demonstrates heightened sensitivity in detecting high-temperature volcanic features, thereby improving VRP monitoring compared to conventional pre-processed products available online. The overall accuracy increased significantly, with the omission rate dropping from 75.5% to 3.7% and the false detection rate decreasing from 11.0% to 4.3%. The proposed multi-sensor approach markedly enhances the ability to monitor and analyze volcanic activity.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3