Characterization of a Continuous Beam Cold Atom Ramsey Interferometer

Author:

Manicchia Michael P.12,Lee Jeffrey G.2,Narducci Frank A.2ORCID

Affiliation:

1. Department of Physics, U.S. Naval Academy, Annapolis, MD 21402, USA

2. Department of Physics, Naval Postgraduate School, Monterey, CA 93943, USA

Abstract

The use of atom interferometers in inertial systems holds the promise of improvement of several orders of magnitude in sensitivity over sensors using current technology such as micro-electro-mechanical (MEMS) devices or ring laser gyroscopes (RLGs). This paper describes the construction and characterization of an atomic interferometry system for eventual use in a dual-atom-beam accelerometer/gyroscope sensor. In contrast with current state-of-the-art atomic sensors which use pulsed cold atom sources and pulsed laser beams, the investigated apparatus relies purely on continuous atomic and laser beams. These differences can result in a sensor with reduced complexity, a smaller physical footprint, and reduced power consumption. However, these differences also introduce challenges resulting from laser and atomic beam divergences and from velocity averaging due to both longitudinal and transverse velocity spreads. In this work, we characterize our rubidium-based atom beam system and show that Ramsey-style interference can still be observed. The implications for future research are also outlined and discussed.

Funder

Office of the Secretary of Defense

Publisher

MDPI AG

Subject

Condensed Matter Physics,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3