A Scalable and Trust-Value-Based Consensus Algorithm for Internet of Vehicles

Author:

Du Zhiqiang1ORCID,Zhang Jiaheng1,Fu Yanfang1,Huang Muhong1,Liu Liangxin1,Li Yunliang2ORCID

Affiliation:

1. School of Computer Science and Engineering, Xi’an Technological University, Xi’an 710021, China

2. College of Computer and Data Science/College of Software, Fuzhou University, Fuzhou 350108, China

Abstract

As blockchain technology plays an increasingly important role in the Internet of Vehicles, how to further enhance the data consensus between the areas of the Internet of Vehicles has become a key issue in blockchain design. The traditional blockchain-based vehicle networking consensus mechanism adopts the double-layer PBFT architecture, through the grouping of nodes for first intra-group consensus, and then global consensus. To further reduce delay, we propose a CRMWSL-PBFT algorithm (C-PBFT) for vehicle networking. Firstly, in order to ensure the security of RSU nodes in the network of vehicles and reduce the probability of malicious nodes participating in the consensus, we propose to calculate the reputation of RSU nodes based on multi-weighted subjective logic (CRMWSL) model. Secondly, in order to ensure the efficiency of blockchain data consensus, we improve the consensus protocol of traditional double-layer PBFT, change the election method of the committee and the PBFT consensus process, and improve throughput by reducing the number of consensus nodes. For the committee, we combine the credibility value and hash method to ensure the credibility of nodes, but also to ensure a certain degree of election randomness. For the PBFT consensus process, the regional committee consensus is carried out first, and then the regional master node carries out the global consensus. Through experimental comparison, we show that the C-PBFT significantly reduces consensus time, network overhead, and is scalable for Internet of Vehicles.

Funder

National Foreign Expert Program of the Ministry of Science and Technology

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3