Key Influencing Factors Identification in Complex Systems Based on Heuristic Causal Inference

Author:

Wu Jianping1,Lu Yunjun1,Li Dezhi1,Zhou Wenlu1,Huang Jian1

Affiliation:

1. School of Information and Communication, National University of Defense Technology, Wuhan 430074, China

Abstract

In complex systems constrained by multiple factors, it is very important to identify the key influencing factors for mastering the evolution and development law of a system and for obtaining scientific decision-making suggestions or schemes. At present, the method based on experimental simulation is limited by the difficulty of system model construction; DEMATEL (Factual Decision Trial and Evaluation Laboratory) is inevitably influenced by subjective factors. In view of this, we propose a novel model based on heuristic causal inference. By combining the network analysis in complex network science, the model defines the global/local causal pathway and the causal pathway’s length in the causal network and takes the causal pathway contribution degree as an indicator to measure the approximate causal effects. The model includes steps such as causal network learning, causal pathway contribution degree calculation, and key influencing factor identification. The model uses the Fast Causal Inference (FCI) algorithm with prior knowledge to learn the global causal network of the complex system and uses the heuristic causal inference to calculate the causal pathway contribution degree. The heuristic method draws on the idea of complex network topology analysis and measures the influence degree between variables by the number and distance of causal pathways. The key influencing factors are finally identified according to the causal pathway contribution degree. Based on the SECOM dataset, we carried out simulation experiments and demonstrated the feasibility and effectiveness of the proposed method.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference50 articles.

1. Complex systems science: Recent advances;Di;J. BNU,2022

2. Complex systems in economics and where to find them;Orlando;J. Syst. Sci. Complex.,2021

3. A brief review of systems, cybernetics, and complexity;Alvarez;Complexity,2023

4. Eigen microstates and their evolutions in complex systems;Yu;Commun. Theor. Phys.,2021

5. Ding, Z., Liu, X., Xue, Z., and Li, X. (2023). Expert opinion on the key influencing factors of cost control for water engineering contractors. Sustainability, 15.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3