Author:
Shang Ronghua,Lin Junkai,Jiao Licheng,Li Yangyang
Abstract
The traditional unsupervised image segmentation methods are widely used in synthetic aperture radar (SAR) image segmentation due to the simple and convenient application process. In order to solve the time-consuming problem of the common methods, an SAR image segmentation method using region smoothing and label correction (RSLC) is proposed. In this algorithm, the image smoothing results are used to approximate the results of the spatial information polynomials of the image. Thus, the segmentation process can be realized quickly and effectively. Firstly, direction templates are used to detect the directions at different coordinates of the image, and smoothing templates are used to smooth the edge regions according to the directions. It achieves the smoothing of the edge regions and the retention of the edge information. Then the homogeneous regions are presented indirectly according to the difference of directions. The homogeneous regions are smoothed by using isotropic operators. Finally, the two regions are fused for K-means clustering. The majority voting algorithm is used to modify the clustering results, and the final segmentation results are obtained. Experimental results on simulated SAR images and real SAR images show that the proposed algorithm outperforms the other five state-of-the-art algorithms in segmentation speed and accuracy.
Funder
the National Natural Science Foundation of China
Subject
General Earth and Planetary Sciences
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献