Author:
Chen Guan-Bang,Li Jia-Wen,Lin Hsien-Tsung,Wu Fang-Hsien,Chao Yei-Chin
Abstract
Sewage sludge is a common form of municipal solid waste, and can be utilized as a renewable energy source. This study examines the effects of different key operational parameters on sewage sludge pyrolysis process for pyrolytic oil production using the Taguchi method. The digested sewage sludge was provided by the urban wastewater treatment plant of Tainan, Taiwan. The experimental results indicate that the maximum pyrolytic oil yield, 10.19% (18.4% on dry ash free (daf) basis) by weight achieved, is obtained under the operation conditions of 450 °C pyrolytic temperature, residence time of 60 min, 10 °C/min heating rate, and 700 mL/min nitrogen flow rate. According to the experimental results, the order of sensitivity of the parameters that affect the yield of sludge pyrolytic oil is the nitrogen flow rate, pyrolytic temperature, heating rate and residence time. The pyrolysis and oxidation reactions of sludge pyrolytic oil are also investigated using thermogravimetric analysis. The combustion performance parameters, such as the ignition temperature, burnout temperature, flammability index and combustion characteristics index are calculated and compared with those of heavy fuel oil. For the blend of sludge pyrolytic oil with heavy fuel oil, a synergistic effect occurs and the results show that sludge pyrolytic oil significantly enhances the ignition and combustion of heavy fuel oil.
Funder
the Ministry of Science and Technology of Republic of China
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献