Abstract
Using the bilevel optimization (BIO) scheme, this paper presents a time-optimal path planner for autonomous underwater vehicles (AUVs) operating in grid-based environments with ocean currents. In this scheme, the upper optimization problem is defined as finding a free-collision channel from a starting point to a destination, which consists of connected grids, and the lower optimization problem is defined as finding an energy-optimal path in the channel generated by the upper level algorithm. The proposed scheme is integrated with ant colony algorithm as the upper level and quantum-behaved particle swarm optimization as the lower level and tested to find an energy-optimal path for AUV navigating through an ocean environment in the presence of obstacles. This arrangement prevents discrete state transitions that constrain a vehicle’s motion to a small set of headings and improves efficiency by the usage of evolutionary algorithms. Simulation results show that the proposed BIO scheme has higher computation efficiency with a slightly lower fitness value than sliding wavefront expansion scheme, which is a grid-based path planner with continuous motion directions.
Funder
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献