On the Microstructure and Isothermal Oxidation at 800, 1200, and 1300 °C of the Al-25.5Nb-6Cr-0.5Hf (at %) Alloy

Author:

Hernández-Negrete ,Tsakiropoulos

Abstract

Nb-silicide-based alloys have the potential to replace Ni-based superalloys in future aero engines to enable the latter to meet environmental and performance targets. These new alloys, like the Ni-based superalloys that are currently used, will require environmental protection with a coating system that should be chemically compatible with the substrate. A challenge for alloy development is to discover αAl2O3 scale forming coating alloys and in particular to find out whether such alloys could be “compatible” with other coating alloys for environmental coating systems for the Nb-silicide-based alloys. This paper focuses on these challenges. The alloy Al-25.5Nb-6Cr-0.5Hf (at %) was studied in the cast and heat-treated (1400 °C) conditions and after isothermal oxidation for 100 h in air at 800, 1200 and 1300 °C. The microstructure consisted of the alloyed NbAl3 and C14-NbCr2 compounds, both of which were stable at least up to 1400 °C, a eutectic of the two compounds and very small volume fractions of (Cr,Al,Nb)ss and HfO2. The prior eutectic microstructure was stable at T ≤ 1200 °C and the solid solution was not stable at T < 1200 °C. At 800 °C the alloy did not pest, but exhibited external and internal oxidation, with AlNbO4, CrNbAlO4, and αAl2O3 in the former and deeper oxidation along the NbAl3/Laves phase boundaries in the latter At 1200 and 1300 °C there was only external oxidation and the scale consisted of two layers, the outer was (Al,Cr)NbO4 intermixed with αAl2O3 and the inner was continuous αAl2O3. At all three oxidation temperatures, no Nb2Al was observed below the alloy/scale interface and Hf acted as a reactive element forming HfO2 that enhanced the adhesion of the scale. The alloy exhibited good correlations with αAl2O3 scale forming silicide and silicide + aluminide intermetallic alloys in maps of the parameters (related to atomic size), (related to electronegativity), and VEC (number of valence electrons per atom filled into the valence band) that should assist the design of bond coats that do not pest and form αAl2O3 in their scales.

Funder

Engineering and Physical Sciences Research Council

Publisher

MDPI AG

Subject

General Materials Science

Reference95 articles.

1. Design of Ni-Base Superalloys;Harada,1999

2. The Stability of Superalloys in Long Term Stability of High Temperature Materials;Wlodek,1999

3. Materials beyond superalloys—Exploiting high-temperature composites;Balsone,2001

4. On the Alloying and Properties of Tetragonal Nb5Si3 in Nb-Silicide Based Alloys

5. Flow and fracture behaviour of NiAl in relation to the brittle to ductile transition temperature;Noebe,1991

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3