Recycled Glass as a Substitute for Quartz Sand in Silicate Products

Author:

Borek Katarzyna,Czapik PrzemysławORCID,Dachowski Ryszard

Abstract

In 2016, an average of 5.0 tons of waste per household was generated in the European Union (including waste glass). In the same year, 45.7% of the waste glass in the EU was recycled. The incorporation of recycled waste glass in building materials, i.e., concrete, cements, or ceramics, is very popular around the world because of the environmental problems and costs connected with their disposal and recycling. A less known solution, however, is using the waste glass in composite products, including sand-lime. The aim of this work was to assess the role of recycled container waste glass in a sand-lime mix. The waste was used as a substitute for the quartz sand. To verify the suitability of recycled glass for the production of sand-lime products, the physical and mechanical properties of sand-lime specimens were examined. Four series of specimens were made: 0%, 33%, 66%, and 100% of recycled waste glass (RG) as a sand (FA) replacement. The binder mass did not change (8%). The research results showed that ternary mixtures of lime, sand, and recycled waste glass had a higher compressive strength and lower density compared to the reference specimen. The sand-lime specimen containing 100% (RG) increased the compressive strength by 287% compared to that of the control specimen. The increase in the parameters was proportional to the amount of the replacement in the mixtures.

Publisher

MDPI AG

Subject

General Materials Science

Reference32 articles.

1. Rok w zamkniętym obiegu;Rok,2017

2. Pollution. Property and Prices: An Essay in Policy-Making and Economics;Dales,2002

3. Glass recycling;Kuśnierz;Sci. Works Inst. Ceram. Constr. Mater.,2010

4. Assessment of waste packaging glass bottles as supplementary cementitious materials

5. Properties of high volume glass powder concrete

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3