d-q Small-Signal Model for Grid-Forming MMC and Its Application in Electromagnetic-Transient Simulations

Author:

Freitas Cleiton M.12ORCID,Watanabe Edson H.3ORCID,Monteiro Luís F. C.2ORCID

Affiliation:

1. Electrical Engineering Department, Rio de Janeiro State University, 524 São Francisco Xavier, Rio de Janeiro 20550-900, Brazil

2. Electronic Engineering Graduate Program, Rio de Janeiro State University, 524 São Francisco Xavier, Rio de Janeiro 20550-900, Brazil

3. Electrical Engineering Program, COPPE/Federal University of Rio de Janeiro, 149 Athos da Silveira Ramos Ave, Rio de Janeiro 21941-909, Brazil

Abstract

The modular multilevel converter (MMC) is a keystone of modern energy transmission systems. Consequently, there is an ongoing pursue for mathematical models to represent it under different configurations and control approaches. In short, this paper introduces an analytical Thévenin-equivalent model for representing the MMC when it is controlled with inner current- and an outer voltage-loop altogether. The model is based on a linearized representation of the converter and conveys the dynamics of passive components, such as submodule capacitors and arm reactors, as well as both control loops. Besides that, the proposed model is divided into a close-loop transfer matrix and the equivalent impedance matrix, both of which represent the relationships between the ac-side dq voltages and currents. We also propose a framework for implementing electromagnetic–transient simulations using the impedance model of this power electronic converter. The framework reduces a multi-bus power grid to a multi-input multi-output (MIMO) feedback system where impedance/admittance matrices of the MMC and other grid elements compose its loops. For validation purposes, it is considered a three-bus power grid comprising one MMC and another two grid-connected VSC. The proposed model was validated by comparing its results with a switching-level PSCAD model of the system.

Funder

FAPERJ

CNPq

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Small-signal Synchronous Stability Mechanism of Renewable Energy Transmission System Through VSC-HVDC Working as Island Mode;2023 IEEE Sustainable Power and Energy Conference (iSPEC);2023-11-28

2. Resonance Analysis on Inverter-Populated Power Grids;2023 IEEE 8th Southern Power Electronics Conference and 17th Brazilian Power Electronics Conference (SPEC/COBEP);2023-11-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3