Analysis of Energy Generation Efficiency and Reliability of a Cogeneration Unit Powered by Biogas

Author:

Ciuła Józef1ORCID,Kowalski Sławomir1ORCID,Generowicz Agnieszka2ORCID,Barbusiński Krzysztof3ORCID,Matuszak Zbigniew4,Gaska Krzysztof3ORCID

Affiliation:

1. Faculty of Engineering Sciences, State University of Applied Sciences in Nowy Sącz, Zamenhofa 1A, 33-300 Nowy Sącz, Poland

2. Department of Environmental Technologies, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland

3. Department of Water and Wastewater Engineering, Silesian University of Technology, Konarskiego 18, 44-100 Gliwice, Poland

4. Department of Mechanics, Maritime University of Szczecin, Willowa 71, 70-500 Szczecin, Poland

Abstract

Landfill gas recovery and utilisation is a solution which reduces the adverse environmental impact of the landfill. Combined heat and power (CHP) generation improves the energy balance of the facility and enables the optimal management of energy generated from a renewable source. This article aims to analyse the operation of the CHP unit in two aspects, that is, in terms of energy generation efficiency and operational availability. Energy ratios were calculated and the analysis was based on the Weibull distribution in order to assess the CHP unit’s operational reliability to minimise costs and maximise energy production. The results of the investigations and analyses demonstrated an increase of the gas yield by 29.5%, an increase of energy production by approx. 42%, and the reduction of downtime by 28.2% from 2018 to 2022. Studies related to the efficiency and reliability of operation of the cogeneration unit showed an increase in all the main parameters analysed, which resulted in greater energy and operational efficiency. The research which has been conducted is a significant scientific contribution to the optimisation of the “waste-to-energy” process for cogeneration units with the capacity of up to 0.5 MW.

Funder

Silesian University of Technology, Poland

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3