A Perspective on Current Flavivirus Vaccine Development: A Brief Review

Author:

Dutta Sudip Kumar1ORCID,Langenburg Thomas1

Affiliation:

1. Artemis Bioservices, Molengraaffsingel 10, 2629 JD Delft, The Netherlands

Abstract

The flavivirus genus contains several clinically important pathogens that account for tremendous global suffering. Primarily transmitted by mosquitos or ticks, these viruses can cause severe and potentially fatal diseases ranging from hemorrhagic fevers to encephalitis. The extensive global burden is predominantly caused by six flaviviruses: dengue, Zika, West Nile, yellow fever, Japanese encephalitis and tick-borne encephalitis. Several vaccines have been developed, and many more are currently being tested in clinical trials. However, flavivirus vaccine development is still confronted with many shortcomings and challenges. With the use of the existing literature, we have studied these hurdles as well as the signs of progress made in flavivirus vaccinology in the context of future development strategies. Moreover, all current licensed and phase-trial flavivirus vaccines have been gathered and discussed based on their vaccine type. Furthermore, potentially relevant vaccine types without any candidates in clinical testing are explored in this review as well. Over the past decades, several modern vaccine types have expanded the field of vaccinology, potentially providing alternative solutions for flavivirus vaccines. These vaccine types offer different development strategies as opposed to traditional vaccines. The included vaccine types were live-attenuated, inactivated, subunit, VLPs, viral vector-based, epitope-based, DNA and mRNA vaccines. Each vaccine type offers different advantages, some more suitable for flaviviruses than others. Additional studies are needed to overcome the barriers currently faced by flavivirus vaccine development, but many potential solutions are currently being explored.

Publisher

MDPI AG

Subject

Virology,Infectious Diseases

Reference130 articles.

1. MacLachlan, N.J., and Dubovi, E.J. (2017). Fenner’s Veterinary Virology, Elsevier. [5th ed.].

2. New developments in flavivirus drug discovery;Kok;Expert Opin. Drug Discov.,2016

3. MRBAYES: Bayesian inference of phylogenetic trees;Huelsenbeck;Bioinformatics,2001

4. World Health Organization (2022, December 15). Dengue and Severe Dengue. Available online: https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue.

5. (2018). Dengue Vaccines: WHO Position Paper—September 2018 Weekly Epidemiological Record, WHO.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3