Vapor Selectivity of a Natural Photonic Crystal to Binary and Tertiary Mixtures Containing Chemical Warfare Agent Simulants

Author:

Kittle JoshuaORCID,Fisher Benjamin,Kunselman Courtney,Morey Aimee,Abel Andrea

Abstract

Vapor sensing via light reflected from photonic crystals has been increasingly studied as a means to rapidly identify analytes, though few studies have characterized vapor mixtures or chemical warfare agent simulants via this technique. In this work, light reflected from the natural photonic crystals found within the wing scales of the Morpho didius butterfly was analyzed after exposure to binary and tertiary mixtures containing dimethyl methylphosphonate, a nerve agent simulant, and dichloropentane, a mustard gas simulant. Distinguishable spectra were generated with concentrations tested as low as 30 ppm and 60 ppm for dimethyl methylphosphonate and dichloropentane, respectively. Individual vapors, as well as mixtures, yielded unique responses over a range of concentrations, though the response of binary and tertiary mixtures was not always found to be additive. Thus, while selective and sensitive to vapor mixtures containing chemical warfare agent simulants, this technique presents challenges to identifying these simulants at a sensitivity level appropriate for their toxicity.

Funder

Defense Threat Reduction Agency

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Functionalized two-dimensional photonic crystals for the detection of chemical warfare agents;Sensing of Deadly Toxic Chemical Warfare Agents, Nerve Agent Simulants, and their Toxicological Aspects;2023

2. Supervised dimension reduction for optical vapor sensing;RSC Advances;2022

3. The Insect World;Nanotechnology: Lessons from Nature;2022

4. Nanotechnology: Lessons from Nature--Discoveries, Research, and Applications;Synthesis Lectures on Engineering, Science, and Technology;2021-12-27

5. Angle-independent responsive organogel retroreflective structural color film for colorimetric sensing of humidity and organic vapors;Chinese Chemical Letters;2021-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3