High-Accuracy Three-Dimensional Deformation Measurement System Based on Fringe Projection and Speckle Correlation

Author:

Zhang Chuang,Liu CongORCID,Xu Zhihong

Abstract

Fringe projection profilometry (FPP) and digital image correlation (DIC) are widely applied in three-dimensional (3D) measurements. The combination of DIC and FPP can effectively overcome their respective shortcomings. However, the speckle on the surface of an object seriously affects the quality and modulation of fringe images captured by cameras, which will lead to non-negligible errors in the measurement results. In this paper, we propose a fringe image extraction method based on deep learning technology, which transforms speckle-embedded fringe images into speckle-free fringe images. The principle of the proposed method, 3D coordinate calculation, and deformation measurements are introduced. Compared with the traditional 3D-DIC method, the experimental results show that this method is effective and precise.

Funder

National Natural Science Foundation of China

the Natural Science 296 Foundation of Jiangsu Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3