Wireless Power Transfer in Electric Vehicles: A Review on Compensation Topologies, Coil Structures, and Safety Aspects

Author:

Rayan Benitto Albert1,Subramaniam Umashankar2ORCID,Balamurugan S.1ORCID

Affiliation:

1. Vellore Institute of Technology, Vellore 632014, India

2. Renewable Energy Lab, Department of Communications and Networks, College of Engineering, Prince Sultan University, Riyadh 11586, Saudi Arabia

Abstract

The scarce availability of non-renewable sources and the staggering amount of pollution have inevitably provoked many countries to opt for renewable sources. Thence, invariably, more renewable energy-based applications are hoarded by market stakeholders. Compared to all spheres of renewable energy applications, a considerable part of the energy is pulled into transportation. Wireless power transfer techniques play a significant role in charging infrastructure, considering the current development and advancement in the automotive industry. It will promise to overcome the widely known drawbacks of wired charging in electric vehicles. The effectiveness of wireless charging depends on coil design, compensation techniques, and the airgap between the coils. However, coil misalignment, improper compensation topologies, and magnetic materials reduce the efficacy. We can improve efficacy by overcoming the problems mentioned above and optimizing charging distance, time, and battery size. This paper comprehensively discussed the various electric vehicle charging technologies in conjunction with common charging standards, a list of factors affecting the charging environment, and the significance of misalignment problems. Furthermore, this review paper has explored the suitable coil design structure and different compensation techniques for an efficient wireless charging network.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3