A Review on Leading-Edge Erosion Morphology and Performance Degradation of Aero-Engine Fan and Compressor Blades

Author:

Shi Lei1,Guo Shuhan1ORCID,Yu Peng2,Zhang Xueyang3,Xiong Jie1

Affiliation:

1. Sino-European Institute of Aviation Engineering, Civil Aviation University of China, Tianjin 300300, China

2. Institut Supérieur de l’Aéronautique et de l’Espace, 4 Avenue Edouard Belin, 31400 Toulouse, France

3. Engineering Techniques Training Center, Civil Aviation University of China, Tianjin 300300, China

Abstract

The leading edges of aero-engine fan and compressor blades suffer from severe erosion due to the inhalation of suspended particulates in the low-altitude atmosphere during long-term transport. A small deformation of the leading edge can significantly change the aerodynamic performance under a strong non-linear effect, leading to increased operation and maintenance costs for engines. This review first focuses on leading-edge erosion morphology during service, and models of these damages. Secondly, the performance degradation caused by eroded leading edges on different classes of engine components, including airfoils, blades, compression systems, and the whole engine, are reviewed. Finally, optimization methods for eroded blade leading edges and their effects on performance recovery are summarized. This paper contributes to an in-depth understanding of the erosion mechanism of blade leading edges in terms of status and its effect, and is a good reference for establishing erosion leading edge repair methods and improving the level of automated repair.

Funder

The National Key Laboratory of Aerodynamic Design and Research Open Fund Projects

The Key Laboratory of Civil Aircraft Airworthiness Certification Technology Open Fund Projects

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3