Dynamic Simulations on Enhanced Heat Recovery Using Heat Exchange PCM Fluid for Solar Collector

Author:

Ren Yawen1,Ogura Hironao1ORCID

Affiliation:

1. Graduate School of Science and Engineering, Chiba University, Chiba 263-8522, Japan

Abstract

Facing the goal of carbon neutrality, energy supply chains should be more low-carbon and flexible. A solar chemical heat pump (SCHP) is a potential system for achieving this goal. Our previous studies developed a silicone-oil-based phase-change material (PCM) mixture as a PCM fluid for enhancing heat recovery above 373 K in the solar collector (SC) of the SCHP. The PCM fluid was previously tested to confirm its dispersity and flow properties. The present study proposed a 3D computational fluid dynamics model to simulate the closed circulation loop between the SC and reactor using the PCM fluid. The recovered heat in the SC was studied using several flow rates, as well as the PCM weight fraction of the PCM fluid. Furthermore, the net transportable energy is considered to evaluate the ratio of recovered heat and relative circulation power. As a result, it was verified that the recovered heat of the SC in the experiment and simulation is consistent. The total recovered heat is improved using the PCM fluid. A lower flow rate can enhance the PCM melting mass and the recovered heat although sensible heat amount increases with the flow rate. The best flow rate was 1 L/min when the SC area is 1 m2. Furthermore, the higher PCM content has higher latent heat. On the other hand, the lower content PCM can increase the temperature difference between the SC inlet and outlet because of the lower PCM heat capacity. For the 1 L/min flow rate, 2 wt% PCM fluid has shorter heat-storing time and larger net transportable energy than 0 wt% PCM fluid (426 kJ←403 kJ) for the SCHP unit.

Funder

JSPS KAKENHI

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference46 articles.

1. (2022, September 28). Ministry of Foreign Affairs of Japan Prime Minister Suga’s Attendance at the Leaders Summit on Climate, Available online: https://www.mofa.go.jp/ic/ch/page6e_000236.html.

2. Numerical Analysis of Heat Transfer in Particle-Bed Reactor with Fins in Chemical Heat Pump Using Ca(OH)2/CaO Reaction;Ogura;Kagaku Kogaku Ronbunshu,1992

3. Efficiencies of CaO/H2O/Ca(OH)2 Chemical Heat Pump for Heat Storing and Heating/Cooling;Ogura;Energy,2003

4. Continuous Operation of a Chemical Heat Pump;Ogura;Asia-Pac. J. Chem. Eng.,2007

5. Energy Recycling System Using Chemical Heat Pump Container;Oguraa;Energy Procedia,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3