Author:
Li Chao,Yang Qiming,Pang Bowen,Chen Tiance,Cheng Qian,Liu Jiaomin
Abstract
Link prediction tasks have an extremely high research value in both academic and commercial fields. As a special case, link prediction in bipartite graphs has been receiving more and more attention thanks to the great success of the recommender system in the application field, such as product recommendation in E-commerce and movie recommendation in video sites. However, the difference between bipartite and unipartite graphs makes some methods designed for the latter inapplicable to the former, so it is quite important to study link prediction methods specifically for bipartite graphs. In this paper, with the aim of better measuring the similarity between two nodes in a bipartite graph and improving link prediction performance based on that, we propose a motif-based similarity index specifically for application on bipartite graphs. Our index can be regarded as a high-order evaluation of a graph’s local structure, which concerns mainly two kinds of typical 4-motifs related to bipartite graphs. After constructing our index, we integrate it into a commonly used method to measure the connection potential between every unconnected node pair. Some of the node pairs are originally unconnected, and the others are those we select deliberately to delete their edges for subsequent testing. We make experiments on six public network datasets and the results imply that the mixture of our index with the traditional method can obtain better prediction performance w.r.t. precision, recall and AUC in most cases. This is a strong proof of the effectiveness of our exploration on motifs structure. Also, our work points out an interesting direction for key graph structure exploration in the field of link prediction.
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献