A Mixed Strategy of Higher-Order Structure for Link Prediction Problem on Bipartite Graphs

Author:

Li Chao,Yang Qiming,Pang Bowen,Chen Tiance,Cheng Qian,Liu Jiaomin

Abstract

Link prediction tasks have an extremely high research value in both academic and commercial fields. As a special case, link prediction in bipartite graphs has been receiving more and more attention thanks to the great success of the recommender system in the application field, such as product recommendation in E-commerce and movie recommendation in video sites. However, the difference between bipartite and unipartite graphs makes some methods designed for the latter inapplicable to the former, so it is quite important to study link prediction methods specifically for bipartite graphs. In this paper, with the aim of better measuring the similarity between two nodes in a bipartite graph and improving link prediction performance based on that, we propose a motif-based similarity index specifically for application on bipartite graphs. Our index can be regarded as a high-order evaluation of a graph’s local structure, which concerns mainly two kinds of typical 4-motifs related to bipartite graphs. After constructing our index, we integrate it into a commonly used method to measure the connection potential between every unconnected node pair. Some of the node pairs are originally unconnected, and the others are those we select deliberately to delete their edges for subsequent testing. We make experiments on six public network datasets and the results imply that the mixture of our index with the traditional method can obtain better prediction performance w.r.t. precision, recall and AUC in most cases. This is a strong proof of the effectiveness of our exploration on motifs structure. Also, our work points out an interesting direction for key graph structure exploration in the field of link prediction.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference37 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3