DMAU-Net: An Attention-Based Multiscale Max-Pooling Dense Network for the Semantic Segmentation in VHR Remote-Sensing Images

Author:

Yang Yang123ORCID,Dong Junwu123ORCID,Wang Yanhui123,Yu Bibo123,Yang Zhigang4

Affiliation:

1. College of Resource Environment and Tourism, Capital Normal University, Beijing 100048, China

2. 3D Information Collection and Application Key Lab of Education Ministry, Capital Normal University, Beijing 100048, China

3. Beijing State Key Laboratory Incubation Base of Urban Environmental Processes and Digital Simulation, Capital Normal University, Beijing 100048, China

4. Surveying and Mapping Institute, Lands and Resource Department of Guangdong Province, Guangzhou 510670, China

Abstract

High-resolution remote-sensing images cover more feature information, including texture, structure, shape, and other geometric details, while the relationships among target features are more complex. These factors make it more complicated for classical convolutional neural networks to obtain ideal results when performing a feature classification on remote-sensing images. To address this issue, we proposed an attention-based multiscale max-pooling dense network (DMAU-Net), which is based on U-Net for ground object classification. The network is designed with an integrated max-pooling module that incorporates dense connections in the encoder part to enhance the quality of the feature map, and thus improve the feature-extraction capability of the network. Equally, in the decoding, we introduce the Efficient Channel Attention (ECA) module, which can strengthen the effective features and suppress the irrelevant information. To validate the ground object classification performance of the multi-pooling integration network proposed in this paper, we conducted experiments on the Vaihingen and Potsdam datasets provided by the International Society for Photogrammetry and Remote Sensing (ISPRS). We compared DMAU-Net with other mainstream semantic segmentation models. The experimental results show that the DMAU-Net proposed in this paper effectively improves the accuracy of the feature classification of high-resolution remote-sensing images. The feature boundaries obtained by DMAU-Net are clear and regionally complete, enhancing the ability to optimize the edges of features.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3