Effects of Intercropping Pandanus amaryllifolius on Soil Properties and Microbial Community Composition in Areca Catechu Plantations

Author:

Zhong Yiming,Zhang Ang,Qin Xiaowei,Yu Huan,Ji Xunzhi,He Shuzhen,Zong Ying,Wang Jue,Tang Jinxuan

Abstract

The areca nut (Areca catechu L.) and pandan (Pandanus amaryllifolius Roxb.) intercropping cultivation system has been widely practiced to improve economic benefits and achieve the development of sustainable agriculture in Hainan Province, China. However, there is a lack of research on the relationships among soil properties, soil enzyme activities, and microbes in this cultivation system. Therefore, a random block field experiment of pandan intercropped with areca nut was established to investigate the effects of environmental factors on the diversity and functions of soil microbial communities in Lingshui county, Hainan Province. The diversity and composition of soil microbial communities under different cropping modes were compared using Illumina sequencing of 16S rRNA (bacteria) and ITS-1 rRNA (fungi) genes, and FAPROTAX and FUNGuild were used to analyze and predict the bacteria and fungi community functions, respectively. Correlation analysis and redundancy analysis were used to explore the responses of soil microbial communities to soil environmental factors. The results showed that the bacterial community was more sensitive to the areca nut and pandan intercropping system than the fungal community. The functional predictions of fungal microbial communities by FAPROTAX and FUNGuild indicated that chemoheterotrophy, aerobic chemoheterotrophy, and soil saprotroph were the most dominant functional communities. The intercropping of pandan in the areca nut plantation significantly enhanced the soil bacterial Ace and Chao indices by reducing the soil organic carbon (SOC) and total phosphorus (TP) content. In the intercropping system, urease (UE) and acid phosphatase were the key factors regulating the soil microbial community abundance. The dominant bacterial and fungal phyla, such as Firmicutes, Methylomirabilota, Proteobacteria, Actinobacteria, Chloroflexi, Verrucomicrobia, and Ascomycota significantly responded to the change in planting modes. Soil properties, such as UE, total nitrogen, and SOC had a significant stimulating effect on Proteobacteria, Chloroflexi, and Ascomycota. In summary, soil bacteria responded more significantly to the change in cropping modes than soil fungi and better reflected the changes in soil environmental factors, suggesting that intercropping with pandan positively affects soil microbial homeostasis in the long-term areca nut plantation.

Funder

Hainan Natural Science Foundation, China

National Tropical Plants Germplasm Resource Center

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3