Precise Simulation of Heat-Flow Coupling of Pipe Cooling in Mass Concrete

Author:

Yu Peng,Li Ruiqing,Bie Dapeng,Liu Xiancai,Yao Xiaomin,Duan Yahui

Abstract

For a long time, temperature control and crack prevention of mass concrete is a difficult job in engineering. For temperature control and crack prevention, the most effective and common-used method is to embed cooling pipe in mass concrete. At present, there still exists some challenges in the precise simulation of pipe cooling in mass concrete, which is a complex heat-flow coupling problem. Numerical simulation is faced with the problem of over-simplification and inaccuracy. In this study, precise simulation of heat-flow coupling of pipe cooling in mass concrete is carried out based on finite element software COMSOL Multiphysics 5.4. Simulation results are comprehensively verified with results from theoretical solutions and equivalent algorithms, which prove the correctness and feasibility of precise simulation. Compared with an equivalent algorithm, precise simulation of pipe cooling in mass concrete can characterize the sharp temperature gradient around cooling pipe and the temperature rise of cooling water along pipeline more realistically. In addition, the cooling effects and local temperature gradient under different water flow (0.60 m3/h, 1.20 m3/h, and 1.80 m3/h) and water temperature (5 °C, 10 °C, and 15 °C) are comprehensively studied and related engineering suggestions are given.

Funder

Key Scientific and Technological Projects of Hubei Provincial Water Resources Department

Publisher

MDPI AG

Subject

General Materials Science

Reference27 articles.

1. Temperature Stress and Temperature Control of Mass Concrete;Zhu,1999

2. Cooling and Insulating System for Mass Concrete (ACI 207.4R-05),2005

3. Thermal-structural modeling and temperature control of roller compacted concrete gravity dam;Malkawi;J. Perform. Constr. Fac.,2003

4. Effect of Piped Water Cooling on Thermal Stress in Mass Concrete at Early Ages

5. Thermal stress analysis of a concrete dam

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3