Can Surface Coating of Circular Saw Blades Potentially Reduce Dust Formation?

Author:

Myna Roman,Hellmayr Raphaela,Georgiades Maria,Leiter Lena MariaORCID,Frömel-Frybort Stephan,Wimmer RupertORCID,Liebner FalkORCID

Abstract

Coating of steel is a frequently applied approach to increase the resistance of moving machine parts towards abrasion, surface oxidation, and corrosion. Here, we show that plating circular saw blades with certain metals can help to reduce the electrical charging of wood dust during cutting, which has significant implications for occupational safety, healthcare, and lifetime of filter systems. With the example of beech wood planks, machine net energy consumption EV (J cm−3) and cumulated field strength E→V (kV m−4) as caused by electrically charged particles were compared for cutting of 10- and 20-mm deep grooves (800 mm length) using saw blades of different toothing (24, 60 teeth) and surface coating (Cu, Ag, and Cr). To ensure uniform feed per tooth (fz = 0.063 mm), saw blades were operated at different rotation speeds (4000 vs. 1600 rpm). The results demonstrate that the extent of electrostatic sawdust charging can be manipulated to a certain extent by the type of saw blade plating. Coating with chromium turned out to be most effective in shifting the electrostatic charge of the wood particles towards neutralization. Lowering of rotation speed using circular saw blades of higher toothing was an additional measure significantly reducing electrostatic charging of wood dust. Hence, cutting with a chrome-coated blade with 60 teeth can be specifically recommended as the reduction of electrical saw dust charging is not associated with higher machine power consumption.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3