Dynamic Feature Identification of Carbon-Fiber-Reinforced Polymer Laminates Based on Fiber Bragg Grating Sensing Technology

Author:

Chen Cong1ORCID,Wang Hua-Ping12ORCID,Ma Jie1,Wusiman Maihemuti1

Affiliation:

1. School of Civil Engineering and Mechanics, Lanzhou University, Lanzhou 730000, China

2. Key Laboratory of Special Functional Materials and Structural Design, Ministry of Education, Key Lab of Mechanics on Disaster and Environment in Western China, Ministry of Education, Lanzhou University, Lanzhou 730000, China

Abstract

Carbon-fiber-reinforced polymer (CFRP) composites have many advantages, and have been widely used in aerospace structures, buildings, bridges, etc. The analysis of dynamic response characteristics of CFRP composite structures is of great significance for promoting the development of smart composite structures. For this reason, vibration experiments of CFRP laminates with surface-attached fiber Bragg grating (FBG) sensors under various dynamic loading conditions were carried out. Time- and frequency-domain analyses were conducted on the FBG testing signals to check the dynamic characteristics of the CFRP structure and the sensing performance of the installed sensors. The results show that the FBG sensors attached to the surface of the CFRP laminates can accurately measure the dynamic response and determine the excited position of the CFRP laminates, as well as invert the strain distribution of the CFRP laminates through the FBG sensors at different positions. By performing Fourier transform, short-time Fourier transform, and frequency domain decomposition (FDD) on the FBG sensing signals, the time–frequency information and the first eight modal frequencies of the excited CFRP structure can be obtained. The modal frequencies obtained by different excitation types are similar, which can be used for structural damage identification. The research in this paper clarifies the effectiveness and accuracy of FBG sensors in sensing the dynamic characteristics of CFRP structures, which can be used for performance evaluation of CFRP structures and will effectively promote the design and development of intelligent composite material structures.

Funder

the National Natural Science Foundation of China

Provincial Projects

the Fundamental Research Funds for the Central Universities

the Hunan Science Fund for Distinguished Young Scholars

the Key R&D Program of Hunan Province

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3