Numerical Study Regarding the Seismic Response of a Moment-Resisting (MR) Reinforced Concrete (RC) Frame Structure with Reduced Cross-Sections of the RC Slabs

Author:

Sococol Ion,Mihai Petru,Petrescu Tudor-CristianORCID,Nedeff Florin,Nedeff Valentin,Agop Maricel,Luca Bogdan-Ionel

Abstract

In the first part of the current study, the effectiveness of the transversal cross-section reduction method for RC beams in marginal areas (by means of mechanical drilling) was validated. The said method “encourages” the formation of plastic hinges at the beam ends and, at the same time, allows for taking into account the bending stiffness of RC slabs, which is exerted upon the RC beams. In these conditions, the second part of the current research study (i.e., the current manuscript) highlights the real mode of reducing the lateral stiffness of the slabs upon the RC beams. These elements form a common body, together with the beam–column frame node. The same method as in the first part of the study—“weakening” the plates in the corner area through vertical drilling, without affecting the integrity of the reinforcing elements—was used. The analytical MR RC frame model, studied by means of the comparative method, highlights the efficiency of the transversal cross-section reduction method for RC slabs. Basically, the directing of the plastic deformations from the weakened slab areas towards the marginal areas of the reinforced concrete beams takes place. The beams rotate as far as the weakened slab areas allow its plastic deformation, thus being possible to observe the partial conservation effect of the beam–column frame joint. Furthermore, for the analytical model with the maximum number of vertical holes in the corner areas of the concrete plate, minimal plastic deformations are recorded for the marginal areas of the concrete columns. A partial conservation of the formation mechanism of the “beam-slab-frame node” common rigid block is also noted. Consequently, the dissipation of the seismic energy is made in a partially controlled and directed manner, in the “desired” areas, according to the “Strong Columns—Weak Beams” (SCWB) ductile mechanism of the lateral behavior to seismic actions for reinforced concrete frame structures. The mechanism is specified in current design norms for RC frame systems. The effectiveness of the method for reducing the transversal section of the RC plates in the corner areas by means of transversal drilling is highlighted and validated from the perspective of the local and global ductile seismic response of reinforced concrete frame structures. A significant reduction in the bending stiffness of the slabs upon the beams and a real development of the plastic hinges in the marginal areas of the beams (together with partial implications and plastic deformations) were observed.

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3