Enhancing the Seismic Resilience of Steel Moment Resisting Frame with a New Precast Self-Centering Rocking Shear Wall System

Author:

Zhai ZhipengORCID,Guo Wei,Liu Yanhui,Zou Shuang,Zhou Fulin

Abstract

In this paper, a new precast self-centering rocking shear wall system (PSCRSW) mainly composed of precast reinforced concrete (RC) wall, V-shaped steel brace and pre-pressed disc spring friction damper (PDSFD) are proposed to enhance the seismic resilience of steel moment resisting frame (SMRF). The mechanical behavior of PDSFD was investigated and simulated. The skeleton model of PSCRSW was theoretically derived and numerically validated, and the hysteretic performance under different design parameters was discussed and compared with that of the conventional RC shear wall. Based on the analyses, design principles and suggestions for PSCRSW were given. Then, an efficient seismic resilient design method for enhancement of SMRF was proposed, which considers performance objectives of multiple seismic hazard levels and has less design iteration. A typical SMRF was adopted as the prototype to be enhanced by the presented PSCRSW and design method. Reliable numerical models for the prototype and the enhanced SMRF were established, and nonlinear dynamic analyses were performed to assess the effectiveness of enhancing strategy. The results show that PSCRSW can realize approximate yielding behavior, displacement capacity and lateral strength to the conventional shear wall and can significantly lower the residual drift and wall damage. During the design, the ratio of preload to friction force for PSCRSW was suggested to be 1.5~2.0, and the bearing capacity for the wall was suggested to be amplified 1.2 times. Thereby, desirable bearing and self-centering performances can be guaranteed. The presented design method is capable of achieving the inter-story drift ratio targets and the expected roof drift ratios simultaneously, and the seismic resilience of the chosen SMRF was significantly improved by a large margin of reduction in residual inter-story drift and frame member damages.

Funder

China Postdoctoral Science Foundation

Postdoctoral Program of International Training Program for Young Talents in Guangdong Province

National Key R&D Project of China

Guangdong Provincial Key Laboratory of Earthquake Engineering and Applied Technology

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3