Finite Element Analysis of Axial Compression Behavior of L-Shaped Concrete-Filled Steel Tubular Columns with Different Combinations

Author:

Li Hexiao123,Tao Zhong13,Han Dongji14

Affiliation:

1. Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming 650500, China

2. College of Urban Construction, Yunnan Open University, Kunming 650223, China

3. Yunnan Earthquake Engineering Research Institute, Kunming 650000, China

4. 3rd Construction Co., Ltd. of China Construction 5th Engineering Bureau, Changsha 410000, China

Abstract

L-shaped concrete-filled steel tubular (CFST) columns, a kind of structural member appropriate for high-rise buildings, not only avoid the defect of conventional square columns protruding from the wall but also have the green and low-carbon properties of steel structures appropriate for fabricated construction. To learn more about their axial compression behavior, refined 3D finite element models were established using the general finite element software ABAQUS. The reliability of the models was subsequently verified based on failure tests and load–displacement relation tests on eight L-shaped specimens. The axial compression mechanism of L-shaped CFST columns was investigated using the verified finite element models. Further systematic parameter analysis was carried out to investigate the influence of parameters such as steel strength, concrete strength, length ratio of long limb to short limb, the angle between the two limbs, and combination methods on the axial compression behavior of L-shaped CFST columns. The results demonstrate that the angle between the two limbs has a significant impact on the stress distribution of concrete and steel pipes. The corner effect increases as the angle between the two limbs decreases. The combination of F-type specimens can better exert the constraint effect of steel pipes on concrete, while the triangular cavity of unequal-limb specimens and specimens with an included angle of 60° cannot effectively trigger the interaction between steel pipes and concrete. The initial stiffness of L-shaped CFST columns increases with an increase in concrete strength and a decrease in limb length ratio, which is not sensitive to changes in steel strength and the included angle. The peak bearing capacity of the specimens increases with increases in steel strength and concrete strength and a decrease in the limb length ratio. Compared to C-type and Z-type specimens, the initial stiffness of F-type specimens is slightly higher, and the peak bearing capacity is significantly increased.

Publisher

MDPI AG

Reference35 articles.

1. United Nations Environment Programme (2020). Emissions Gap Report 2020–Executive Summary: DEW/2310/NA, UNEP.

2. Embodied carbon assessment using a dynamic climate model: Case-study comparison of a concrete, steel and timber building structure;Hawkins;Structures,2021

3. A detailed analysis of the embodied energy and carbon emissions of steel-construction residential buildings in China;Su;Energy Build.,2016

4. Comparing the embodied carbon and energy of a mass timber structure system to typical steel and concrete alternatives for parking garages;Zeitz;Energy Build.,2019

5. Research on carbon emission in materialization stage of steel structure fabricated residence;Song;Archit. Technol.,2023

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3