Displacement Analyses of Diaphragm Wall in Small-Scale Deep Excavation Considering Joints between Panels

Author:

Yang Ming1,Wu Rongxing1ORCID,Tong Chenxi2,Chen Jianwei3,Tang Bing4

Affiliation:

1. Institute of Applied Mechanics, Ningbo Polytechnic, Ningbo 315800, China

2. School of Civil Engineering, Central South University, Changsha 410075, China

3. Research Center of Integrated Pipe Gallery, Ningbo Urban Construction Design & Research Institute Co., Ltd., Ningbo 315012, China

4. Institute of Architecture and Urban Planning, China Railway Siyuan Survey and Design Group Co., Ltd., Wuhan 430063, China

Abstract

This paper proposed a new method for modelling joints, using anisotropic plate elements and elastic bar elements to address the issue that joints between panels are usually disregarded in numerical modelling. For small-scale deep excavations, which are frequently performed in the construction of various working shafts but have not been sufficiently studied, two numerical models were developed, using the No.1 Shaft of Tongtu Road Utility Tunnel in Ningbo, China, as a research object. One model considered the joints between the panels as proposed, while the other disregarded the joints as conventional. In comparison to the conventional method, the proposed method was validated due to yielding wall displacements that closely matched the results of the field monitoring, with a notable reduction in the error observed in the calculated displacements for the short side of the excavation. Furthermore, 34 numerical models were developed in order to investigate the influence of excavation length, depth, and diaphragm wall thickness on the relative differences between the calculated displacements obtained by the two models. The results of this study can provide references for the development of finite element models for designing small-scale deep excavation.

Funder

Ningbo Commonweal Research Program

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3