Research on the Design of Recessed Balconies in University Dormitories in Cold Regions Based on Multi-Objective Optimization

Author:

Ji Weidong12,Sun Jian1,Wang Huiyi2,Yu Qiaqing1,Liu Chang1

Affiliation:

1. School of Architecture and Urban Planning, Shandong Jianzhu University, Jinan 250101, China

2. Shandong Jianzhu University Design Group Co., Ltd., Jinan 250101, China

Abstract

Thermal comfort and daylighting are vital components of dormitory environments. However, enhancing indoor lighting conditions may lead to increased annual energy consumption and decreased thermal comfort. Therefore, it is crucial to identify methods to reduce buildings’ energy costs while maintaining occupants’ thermal comfort and daylighting. Taking the dormitory building of Songyuan No. 2 at Shandong Jianzhu University of Architecture, which is located in a cold region, as an example, a field measurement analysis was conducted on the recessed balconies within the dormitory. The measured data were analyzed and utilized to simulate the annual energy consumption, thermal comfort predicted mean vote (PMV), and useful daylight illuminance (UDI) values of the dormitory units using the Grasshopper platform with the Ladybug and Honeybee plugins. The different depths of the balconies and window-to-wall ratios have a significant impact on the indoor physical environment and energy consumption, leading to the design of independent variables and the construction of a simplified parametric model. The simulation results underwent multi-objective optimization using genetic algorithm theory through the Octopus platform, resulting in a Pareto optimal solution set. Comparisons between the final-generation data and simulations of the original Song II dormitory unit indicate potential energy savings of up to 2.5%, with a 25% improvement in indoor thermal comfort satisfaction. Although there was no significant improvement in the UDI value, all the solution sets meet the minimum requirement of 300 lux specified by relevant regulations, according to the simulated average illuminance levels on the indoor work plane. Finally, the 60 optimal solution sets were further screened, filtering out sets deviating excessively from certain objectives, to identify 6 optimal solutions that are more balanced and exhibit a higher overall optimization rate. These findings offer detailed data references to assist in the design of dormitory buildings in cold regions.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3