Thermophysical Characterization of Paraffins versus Temperature for Thermal Energy Storage

Author:

Kraiem Manel1,Karkri Mustapha1ORCID,Fois Magali1,Sobolciak Patrik2

Affiliation:

1. Univ Paris Est Creteil, CERTES, F-94010 Creteil, France

2. Center for Advanced Materials (CAM), Qatar University, Doha 2713, Qatar

Abstract

Latent heat storage systems (LHSS), using solid–liquid phase change materials (PCMs), are attracting growing interest in many applications. The determination of the thermophysical properties of PCMs is crucial for selecting the appropriate material for an LHSS and for predicting the thermal behavior of the PCM. In this context, the thermophysical characterization of four paraffins (RT21, RT27, RT35HC, RT50) at different temperatures, including the solid and liquid phases, is conducted in this investigation. This work is part of a strategic technological brick in the CERTES laboratory of the Paris Est University to build a database for phase change material properties. It contains the measurements of the thermophysical, optical and mechanical properties. It will serve as input for the numerical simulations to study the behavior of PCMs in LHSS. The temperatures and the latent heats of the phase transitions as well as the thermal dependence of the specific heat of the paraffins were evaluated by differential scanning calorimetry (DSC). In addition, the DSC measurements under successive thermal cycles revealed good reliability of the paraffins. Thermogravimetric analysis (TGA) was performed, and the results highlighted the thermal stability of the paraffins. Moreover, the evolutions of the thermal conductivities and diffusivities with temperature were measured simultaneously using the hot disk method. A discontinuity of the thermal conductivities was observed near the melting temperatures. Furthermore, the measurements of the densities of the paraffins at different temperatures were carried out. The volume changes and the coefficients of thermal expansion were assessed. The obtained outcomes of this study were compared with the available bibliographical data.

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Reference54 articles.

1. BP (2022). BP Energy Outlook: 2022 Edition, The British Petroleum Company BP.

2. BP (2020). Statistical Review of World Energy, 2020 69th Edition, The British Petroleum company BP.

3. US Energy Information Administration (2019). International Energy Outlook 2019 with Projections to 2050.

4. Recent de-velopments in phase change materials for energy storage applications: A review;Nazir;Int. J. Heat Mass Transf.,2019

5. A critical review on phase change materials (PCM) for sustainable and energy efficient building: Design, characteristic, performance and application;Wang;Energy Build.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3