Affiliation:
1. Univ Paris Est Creteil, CERTES, F-94010 Creteil, France
2. Center for Advanced Materials (CAM), Qatar University, Doha 2713, Qatar
Abstract
Latent heat storage systems (LHSS), using solid–liquid phase change materials (PCMs), are attracting growing interest in many applications. The determination of the thermophysical properties of PCMs is crucial for selecting the appropriate material for an LHSS and for predicting the thermal behavior of the PCM. In this context, the thermophysical characterization of four paraffins (RT21, RT27, RT35HC, RT50) at different temperatures, including the solid and liquid phases, is conducted in this investigation. This work is part of a strategic technological brick in the CERTES laboratory of the Paris Est University to build a database for phase change material properties. It contains the measurements of the thermophysical, optical and mechanical properties. It will serve as input for the numerical simulations to study the behavior of PCMs in LHSS. The temperatures and the latent heats of the phase transitions as well as the thermal dependence of the specific heat of the paraffins were evaluated by differential scanning calorimetry (DSC). In addition, the DSC measurements under successive thermal cycles revealed good reliability of the paraffins. Thermogravimetric analysis (TGA) was performed, and the results highlighted the thermal stability of the paraffins. Moreover, the evolutions of the thermal conductivities and diffusivities with temperature were measured simultaneously using the hot disk method. A discontinuity of the thermal conductivities was observed near the melting temperatures. Furthermore, the measurements of the densities of the paraffins at different temperatures were carried out. The volume changes and the coefficients of thermal expansion were assessed. The obtained outcomes of this study were compared with the available bibliographical data.
Subject
Building and Construction,Civil and Structural Engineering,Architecture
Reference54 articles.
1. BP (2022). BP Energy Outlook: 2022 Edition, The British Petroleum Company BP.
2. BP (2020). Statistical Review of World Energy, 2020 69th Edition, The British Petroleum company BP.
3. US Energy Information Administration (2019). International Energy Outlook 2019 with Projections to 2050.
4. Recent de-velopments in phase change materials for energy storage applications: A review;Nazir;Int. J. Heat Mass Transf.,2019
5. A critical review on phase change materials (PCM) for sustainable and energy efficient building: Design, characteristic, performance and application;Wang;Energy Build.,2022
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献