Sustainability Study of a Residential Building near Subway Based on LCA-Emergy Method

Author:

Chen Xinnan,Wang Hairuo,Zhang Junxue,Zhang HeORCID,Asutosh Ashish,Wu Guodong,Wei Guobin,Shi Yaling,Yang Minghui

Abstract

In the context of ecological building and green building popularity, building sustainability assessment is becoming more and more important. In this paper, a comprehensive evaluation platform by coupled LCA method and energy method was designed, verified, and analyzed to assess the sustainability of the building system. The main results illustrated that the construction stage is the most critical stage in terms of emergy angle. From a sustainability perspective, the Emergy Sustainability Indicator was at a moderate level (1.0141), which can be considered to increase the proportion of renewable energy and reduce the proportion of non-renewable resources to improve the sustainability degree. Of the three scenarios designed, the second scenario has the best sustainability in the building system. The unit emergy value of the whole building was also shown to demonstrate the unit emergy of an individual. In order to verify the accuracy of the data, a sensitivity analysis was conducted. Finally, two types of positive measures are proposed to ameliorate the environmental sustainability in the building system, containing the increasing proportion of renewable energy and using recycled building materials.

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3