Accurate Prediction of Compression Index of Normally Consolidated Soils Using Artificial Neural Networks

Author:

Uzer Ali Ulvi1ORCID

Affiliation:

1. Department of Construction, Technical Science College, Kayseri University, Kayseri 38280, Turkey

Abstract

The compression index (Cc) serves as a crucial parameter in predicting consolidation settlement in fine-grained soils, representing the slope of the void ratio logarithmic effective stress curve obtained from oedometer tests. However, traditional consolidation testing methods are notably time-consuming, typically spanning a 15-day period for preparation, execution, and parameter calculation, leading to significant delays in civil engineering projects. Therefore, there is an urgent need for effective methodologies to determine consolidation parameters within a shorter timeframe. Although various empirical formulas have been proposed over the years to correlate compressibility with soil parameters, none have reliably predicted the Cc across different datasets. In this study, to overcome this challenge, an alternative approach using artificial neural network (ANN) methodology to predict the compression index of fine-grained soils based on index properties is proposed. For this purpose, an ANN was trained and validated using a dataset consisting of 560 high and low- plasticity soil samples obtained from construction sites in various regions of Turkey over the last forty years, as well as soil borings in Istanbul. The modeling of artificial neural networks was performed using the Regression Learner program, which integrates with the Matlab 2023a software package and offers a user-friendly graphical interface for AI model development without coding. The data set, which was structured as a matrix with dimensions of 458 × 6, included input parameters such as the natural water content, liquid limit, plastic limit, plastic index and initial void ratio, as well as information on the compression index, which was the output variable. The developed ANN model showed an outstanding predictive performance when predicting the output of the test data, achieving an outstanding R2 score of 0.81. This underlines the potential of ANN methodologies to efficiently extract important data with fewer experiments and in less time, and offers promising applications in the field of geotechnical engineering.

Publisher

MDPI AG

Reference99 articles.

1. Ren, J., and Sun, X. (2023). Prediction of Ultimate Bearing Capacity of Pile Foundation Based on Two Optimization Algorithm Models. Buildings, 13.

2. Jaksa, M.B. (1995). The Influence of Spatial Variability on the Geotechnical Design Properties of a Stiff, Overconsolidated Clay. [Ph.D. Thesis, Dept. of Civil and Environmental Engineering].

3. Hubick, K. (1992). Artificial Neural Networks in Australia, Department of Industry, Commonwealth of Australia. Technology and Commerce.

4. Chao, Z., Ma, G., Zhang, Y., Zhu, Y., and Hu, H. (2018). The application of artificial neural network in geotechnical engineering. Proceedings of the IOP Conference Series: Earth and Environmental Science, IOP Publishing.

5. Artificial neural network applications in geotechnical engineering;Shahin;Aust. Geomech.,2001

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3