Research on Positioning and Simulation Method for Autonomous Mobile Construction Platform

Author:

Shi Xinyu12ORCID,Wang Chaoran1ORCID,Phillips Tyson Keen3ORCID,Sun Chengpeng2,Zhou Haining2ORCID,Zhao Wenxuan1,Cui Weijiu1,Wan Da4ORCID

Affiliation:

1. iSMART, College of Architecture and Urban Planning, Qingdao University of Technology, Qingdao 266033, China

2. Faculty of Environmental Engineering, The University of Kitakyushu, Fukuoka 808-0135, Japan

3. Piaggio Fast Forward Co., Ltd., Boston, MA 02129, USA

4. School of Architecture, Tianjin Chengjian University, Tianjin 300380, China

Abstract

In the architecture, engineering, and construction (AEC) industry, the positioning technology for a mobile construction platform (MCP) is critical to achieve on-site, continuous, large-scale construction. During construction, MCP movement and construction actions seldom occur simultaneously. Therefore, this paper categorizes the MCP into stationary and moving states for positioning studies, respectively. When the platform is stationary, it is positioned using an improved ultra-wideband (UWB) sensor. When the platform is in motion, a single UWB positioning technique cannot meet the required accuracy for positioning, and fusion positioning using both UWB and an inertial measurement unit (IMU) is considered. The experimental results show that compared with only UWB positioning, the improved UWB positioning algorithm improves the positioning accuracy by 53% in the stationary state, and the fused UWB/IMU positioning improves the positioning accuracy by 46% in the moving state. As a result, the positioning accuracy of the MCP is significantly improved regardless of whether it is in a stationary or moving state. Furthermore, this paper integrates the positioning technique with the robotic arm construction technique to successfully simulate an on-site continuous construction of a wooden cabin, which provides the potential for large-scale continuous construction in real-world scenarios in the future.

Funder

the Key Technology Research and Development 904 Program of Shandong

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3