BIM-based and AR Application Combined with Location-Based Management System for the Improvement of the Construction Performance

Author:

Ratajczak JuliaORCID,Riedl Michael,Matt Dominik

Abstract

The information and communication technologies (ICTs) utilization ratio in the construction industry is relatively low. This industry is characterized by low productivity, time and cost overruns in projectsdue to inefficient management processes, poor communication and low process automation. To improve construction performance, a BIM-based (BIM - (Building Information Modelling) and augmented reality (AR) application (referred to as the AR4C: Augmented Reality for Construction) is proposed, which integrates a location-based management system (LBMS). The application provides context-specific information on construction projects and tasks, as well as key performance indicators on the progress and performance of construction tasks. The construction projects are superimposed onto the real world, while a site manager is walking through the construction site. This paper describes the most important methods and technologies, which are needed to develop the AR4C application. In particular, the data exchange between BIM software and the Unity environment is discussed, as well as the integration of LBMS into BIM software and the AR4C application. Finally, the implemented and planned functionalities are argued. The AR4C application prototype was tested in a laboratory environment and produced positive feedback. Since the application addresses construction sites, a validation in semi-real scenarios with end users is recommended.

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Reference49 articles.

1. Reinventing Construction: A Route to Higher Productivity,2017

2. THE COST PERFORMANCE AND CAUSES OF OVERRUNS IN INFRASTRUCTURE DEVELOPMENT PROJECTS IN ASIA

3. The Construction Productivity Imperative,2015

4. Elements of Cost and Schedule Overrun in Construction Projects;Katre;Int. J. Eng. Res. Dev.,2016

5. The Way Forward in Sustainable Construction: Issues and Challenges

Cited by 87 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3