Prediction of the Impact of Air Speed Produced by a Mechanical Fan and Operative Temperature on the Thermal Sensation

Author:

Faria Luciano Caruggi de,Romero Marcelo de Andrade,Porras-Amores CésarORCID,Pirró Lucia Fernanda de Souza,Saez Paola VilloriaORCID

Abstract

Natural ventilation associated with a mechanical fan is a feasible strategy to enhance thermal acceptability in warm weather. The ASHRAE-55 provides the increase for operative temperature proportional to the increase in air speed while maintaining thermal comfort. Conversely, the range of informed values is limited and little guidance for mechanical fans is provided. This work explores the relationship between operative temperature and air speed produced by ceiling fans, and the effectiveness to deliver thermal comfort for a wider range of values. The research method comprises transient computer fluid dynamics simulations coupled with a thermal sensation model and is divided into two stages: a calibration exercise and a parametrical investigation. Three matrices are presented for a range of operative temperatures (21.0–36.0 °C) and air speeds (0–2.5 m/s) for: Dynamic Thermal Sensation (DTS) (a computer-based seven-point index), Predicted Percentage of Dissatisfied, and potential Cooling Effect. When compared to the Predicted Mean Vote, the DTS overestimates thermal comfort for temperatures under 28.0 °C with increased air speed and overestimates discomfort for temperatures above 31.0 °C, even with increased air speed. Agreement is found between both scales for 28.0–31.0 °C, defining a range for the effective use of ceiling fans to provide thermal comfort under warm weather conditions.

Funder

São Paulo Research Foundation

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Reference57 articles.

1. The Future of Cooling. Opportunities for Energy-Efficient Air Conditioning. Organisation for Economic Co-operation and Development http://www.iea.org/publications/freepublication/The_Future_of_Cooling.pdf

2. Cooling https://www.iea.org/reports/cooling

3. Applications Manual 10: Natural Ventilation,2005

4. Design Charts To Assist On The Sizing Of Natural Ventilation For Cooling Residential Apartments In India.

5. Low Energy Cooling and Ventilation for Indian Residences Design Guide;Cook,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3