Nonlinear Dynamic Assessment of a Steel Frame Structure Subjected to Truck Collision

Author:

Safari Honar Fatemeh1,Broujerdian Vahid1ORCID,Mohammadi Dehcheshmeh Esmaeil1ORCID,Bedon Chiara2ORCID

Affiliation:

1. School of Civil Engineering, Iran University of Science and Technology, Tehran 16846-13114, Iran

2. Department of Engineering and Architecture, University of Trieste, 34127 Trieste, Italy

Abstract

The progressive collapse of structures subjected to a truck collision with ground floor columns is numerically investigated in this paper. For this purpose, a four-story steel building with a dual system (including an intermediate steel moment frame, with a special concentric steel bracing system in the longitudinal (x) direction, and an intermediate steel moment frame in the transversal (y) direction) is considered. The structure, which was designed according to AISC, ASCE7 and 2800 Iranian seismic standard guidelines, is located in seismic-prone area and subjected to eight different truck collision scenarios. The nonlinear dynamic analyses carried out in ABAQUS on a three-dimensional finite element (FE) numerical model include variations in collision features (i.e., mass and speed of the truck, the height of collision point), and are used to support the analysis of expected damage. The presented results confirm that increasing the truck mass and speed increases damage entity for the column and structure. Several influencing parameters are involved in damage location and progressive evolution. The height of the collision point from the ground also significantly affects the magnitude of structural damage, especially in terms of stress peaks in the panel zones for the target column. Finally, the perimeter columns are more vulnerable to impact than corner columns, in structures with dual system as with the examined four-story building. The presence of a bracing system parallel to the impacting vehicle can in fact reduce the deformation—and thus the expected damage—of the adjacent target column. Most importantly, it is shown that the numerically reproduced collision scenarios (and the associated damage configurations) based on truck impact are significantly more severe than those artificially created based on the conventional column removal method (i.e., alternate path (AP) analysis approach), which confirms the importance of more sophisticated numerical calculation procedures to investigate and assess the progressive collapse of structures.

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Reference47 articles.

1. ASCE (2013). Minimum Design Loads for Buildings and Other Structures, American Society of Civil Engineers.

2. Ronan Point apartment tower collapse and its effect on building codes;Pearson;J. Perform. Constr. Facil.,2005

3. Another Look at the Collapse of Skyline Plaza at Bailey’s Crossroads, Virginia;Schellhammer;J. Perform. Constr. Facil.,2013

4. AISC (2016). American Institute of Steel Construction, AISC.

5. Research and practice on progressive collapse and robustness of building structures in the 21st century;Adam;Eng. Struct.,2018

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3