The Performance of a Circular Excavation Supported by a Prefabricated Recyclable Structure in a Full-Scale Test

Author:

Chen Lichao1,Guo Chengchao12,Pan Yanhui2,Liang Huqing3,Tang Mengxiong3

Affiliation:

1. School of Civil Engineering, Sun Yat-sen University, Zhuhai 519082, China

2. BestDr Infrastructure Hospital, Zhumadian 463000, China

3. Guangzhou Municipal Construction Group Co., Ltd., Guangzhou 510275, China

Abstract

Excavations for underground structures, such as working shafts, underground grain silos, and parking garages, are characterized by uniformity, consistent dimensions, large quantities, and strict timelines. Prefabricated recyclable supporting structures (PRSS) are gaining attention over traditional retaining structures due to their standardized design, efficient construction, and reusability, which suit such excavations better. To validate their performance, full-scale tests are conducted to analyze the deformation and stress characteristics of PRSS. The results show that the average maximum lateral displacement of supporting pile is 0.07% of the excavation depth (He), roughly half that of steel plate. Differences in ground surface settlement behind steel plates and the supporting piles are not as significant as those in their lateral displacements. While the displacement of the supporting piles is insufficient to induce soil movement into the active limit state on the non-excavation side, the circular excavation’s arching effect reduces the earth pressure on this side of the supporting piles below the active earth pressure limit. Furthermore, the earth pressure acting on the steel plates is lower than that acting on the supporting piles, suggesting the presence of a soil arching effect between two adjacent piles. These findings offer valuable insights for guiding the construction of PRSS.

Funder

Science and Technology Program of Guangzhou Municipal Construction Group Co., Ltd., China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3