Study of the Correlation among Luminous Properties of Smart Glazing for Adaptive Energy Saving Buildings

Author:

Piccolo Antonio1ORCID,Prestipino Mauro1ORCID,Panzera Maria Francesca2,Baccoli Roberto3ORCID

Affiliation:

1. Department of Engineering, University of Messina, Contrada di Dio, 98166 Messina, Italy

2. Department of Civil, Energy, Environmental and Material Engineering (DICEAM), “Mediterranea” University of Reggio Calabria, Via Graziella, Feo di Vito, 89122 Reggio Calabria, Italy

3. Department of Civil, Environmental and Architectural Engineering, University of Cagliari, Via Marengo 2, 09123 Cagliari, Italy

Abstract

A smart window, such as electrochromic or thermochromic windows, may not be able to accomplish at the same time energy efficiency and visual comfort functions, since satisfying one criterium interferes with the other. This recalls to the important issue of establishing precise relationships among parameters affecting energy, glare control, and color rendering tasks and the influence on them of glazing material composition and preparation technique. With this aim, the luminous properties of a number of advanced glazings found in literature and of three home-made electrochromic devices differing by material composition and/or preparation technique are analyzed in this study. The investigation has involved the determination of the CIE (Commission International de l’Eclairage) Color Rendering Index (CIE CRI), the Correlated Color Temperature (CCT), and the luminous transmittance coefficient (τV) of the devices which are discussed with regard to their potential in absolving to energy and visual comfort tasks. Results lead to the main conclusion that the CIE CRI, CCT, and τV indexes are clearly linked by an exponential correlation. At low τV values (τV< 0.5), however, the correlation weakens and the variation of the CIE CRI and CCT indexes becomes entirely material dependent. The influence of preparation technique appears to be irrelevant since the color rendering indexes appear to be well correlated to τV over all the investigated τV range.

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3