A Quantitative Analysis on Key Factors Affecting the Thermal Performance of the Hybrid Air-Based BIPV/T System

Author:

Guo Juanli,Jin YongyunORCID,Li Zhenyu,Li Meiling

Abstract

Air-based BIPV/T is of significant research interest in reducing energy load and improving indoor comfort. As many factors related to meteorology, geometry and operation contribute to the thermal performance of BIPV/T, especially for one kind of hybrid air-based BIPV/T (HAB-BIPV/T), quantifying the effects of such uncertain parties is essential. In this paper, a numerical analysis was conducted regarding 13 parameters of one HAB-BIPV/T prototype. For each quantity of interest, the kernel density estimate was regarded as an approximation to the probability density function to assess uncertainty propagation. A sequential sensitivity analysis was used to quickly screen (by Morris) and exactly quantify (by Sobol’) the effects of significant variables. The surrogate model based on a back propagation neural network was employed to dramatically reduce the computational cost of Monte Carlo analysis. The results show that the uncertain inputs discussed can induce considerable fluctuations in the three quantities of interest. The most significant parameters on AUI include air inlet height, cavity thickness, air inlet velocity and number of air inlets. The outcomes of this study provide insights into the correlation between various factors and the thermal efficiency of the HAB-BIPV/T as a reference for similar design works.

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Reference49 articles.

1. Net Zero by 2050 A Roadmap for the Global Energy Sector,2021

2. Roadmap for Energy-Efficient Buildings and Construction in the Association of Southeast Asian Nations,2022

3. Tracking Buildings 2021,2021

4. Solar PV,2021

5. Review of air-based PV/T and BIPV/T systems - Performance and modelling

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3