Automatic Classification and Coding of Prefabricated Components Using IFC and the Random Forest Algorithm

Author:

Xu ZhaoORCID,Xie Zheng,Wang Xuerong,Niu MiORCID

Abstract

The management of prefabricated component staging and turnover lacks the effective integration of informatization and complexity, as relevant information is stored in the heterogeneous systems of various stakeholders. BIM and its underlying data schema, IFC, provide for information collaboration and sharing. In this paper, an automatic classification and coding system for prefabricated building, based on BIM technology and Random Forest, is developed so as to enable the unique representation of components. The proposed approach starts with classifying and coding information regarding the overall design of the components. With the classification criteria, the required attributes of the components are extracted, and the process of attribute extraction is illustrated in detail using wall components as an example. The Random Forest model is then employed for IFC building component classification training and testing, which includes the selection of the datasets, the construction of CART, and the voting of the component classification results. The experiment results illustrate that the approach can automate the uniform and unique coding of each component on a Python basis, while also reducing the workload of designers. Finally, based on the IFC physical file, an extended implementation process for component encoding information is designed to achieve information integrity for prefabricated component descriptions. Additionally, in the subsequent research, it can be further combined with Internet-of-Things technology to achieve the real-time collection of construction process information and the real-time control of building components.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Ministry of Education in China Project of Humanities and Social Sciences

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3