Development of Non-Proprietary Ultra-High Performance Concrete Mixtures

Author:

Hasan Tawsif MohammadORCID,Gilbert Levi,Allena SrinivasORCID,Owusu-Danquah Josiah,Torres Anthony

Abstract

The development of non-proprietary Ultra-High Performance Concrete (UHPC) is one way to reduce the initial cost of construction. However, workability is a major issue for which such mixtures are not practical in field conditions. Ultra-high performance cannot be achieved in field conditions if the concrete is not placed, finished, and compacted properly during placement. In this research, six UHPC mixtures were developed (three with steel fibers and three without fibers) using materials which are readily available on the local marketplace with water-to-cementitious materials ratios ranging between 0.17 to 0.30. The workability was determined using standard ASTM flow table apparatus, and specimens were prepared to determine compressive strength, splitting tensile strength, and permeable porosity. Flow table test exhibited flow values greater than 250 mm. Such high workability of the mixtures was achieved by optimizing the silica fume content and water reducing admixture dosage. These mixtures exhibited compressive strengths greater than 120 MPa and splitting tensile strengths greater than 5.10 MPa in both ambient and elevated curing temperatures. Results indicated that UHPC can be produced with a water-to-cementitious materials ratio as high as 0.30. Steel fibers helped to increase splitting tensile strength due to fiber-matrix interactions. Very low permeable porosity (1.7–16.7%) was observed which indicates superior durability due to the significant reduction of ingress of deleterious ions.

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Reference54 articles.

1. Composition of reactive powder concretes

2. Ultra-High Performance Concrete: A State-Of-The-Art Report for the Bridge Community

3. Design and Construction of Field-Cast UHPC Connections

4. Mixture-proportioning of economical UHPC mixtures

5. Ultra-High-Performance Concrete: Research, Development and Application in Europe;Schmidt;ACI Spec. Publ.,2005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3