Study on Multiple Effects of Self-Healing Properties and Thermal Characteristics of Asphalt Pavement

Author:

Zhang Fan1ORCID,Sun Yuxuan1ORCID,Kong Lingyun2,Cannone Falchetto Augusto1,Yuan Dongdong3,Wang Weina2

Affiliation:

1. Department of Civil Engineering, Aalto University, Rakentajanaukio 4, 02150 Espoo, Finland

2. National & Local Joint Engineering Research Center of Transportation Civil Engineering Materials, Chongqing Jiaotong University, Chongqing 400074, China

3. School of Highway, Chang’an University, South 2nd Ring Road Middle Section, Xi’an 710064, China

Abstract

Asphalt pavements are prone to cracking in low-temperature environments, and microwave heating (MH) can heal the cracks effectively. This research mainly investigates the different MH effects on the self-healing properties of asphalt mixtures. With this objective, the three-point splitting test is conducted to generate the cracks. A microwave oven is employed to heat the samples, and a thermal camera measures the surface temperature. Results indicate that heating power and time show a positive linear correlation with healing efficiency, and the HI of the samples can reach over 80%. The HI of the samples decreases with the heating cycle, but the sample with reasonable power and time still has a HI higher than 70% after 5 cycles. The temperature peaks on thermal images indicate that uneven heating exists during heating, but the heating uniformity is within an acceptable range. The healing efficiency level (HEL) suggests that asphalt mixtures have very low inefficient healing behavior if the heating time is below 45 s, but HEL can reach 86.14% at 700 W after 60 s. Furthermore, although the HI of strength shows ideal results, the recovery of other crack parameters, including stiffness, fracture energy, flexible index, and crack resistance index, are not satisfactory.

Funder

The National & Local Joint Engineering Research Center of Transportation and Civil Engineering Materials, Chongqing Jiaotong University

The National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3