Affiliation:
1. Center for Intelligent and Networked Systems, Department of Automation, BNRist, Tsinghua University, Beijing 100084, China
Abstract
Buildings are responsible for approximately 40% of the world’s energy consumption and 36% of the total carbon dioxide emissions. Building occupancy is essential, enabling occupant-centric control for zero emissions and decarbonization. Although existing machine learning and deep learning methods for building occupancy prediction have made notable progress, their analyses remain limited when applied to complex real-world scenarios. Moreover, there is a high expectation for Transformer algorithms to predict building occupancy accurately. Therefore, this paper presents an occupancy prediction Transformer network (OPTnet). We fused and fed multi-sensor data (building occupancy, indoor environmental conditions, HVAC operations) into a Transformer model to forecast the future occupancy presence in multiple zones. We performed experimental analyses and compared it to different occupancy prediction methods (e.g., decision tree, long short-term memory networks, multi-layer perceptron) and diverse time horizons (1, 2, 3, 5, 10, 20, 30 min). Performance metrics (e.g., accuracy and mean squared error) were employed to evaluate the effectiveness of the prediction algorithms. Our OPTnet method achieved superior performance on our experimental two-week data compared to existing methods. The improved performance indicates its potential to enhance HVAC control systems and energy optimization strategies.
Funder
National Natural Science Foundation of China
Key R&D Project of China
Subject
Building and Construction,Civil and Structural Engineering,Architecture
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献