Influence of Equipment Operation Parameters on the Characteristics of a Track Produced with Construction 3D Printing

Author:

Elistratkin Mikhail,Alfimova NataliyaORCID,Podgornyi DaniilORCID,Olisov AndreyORCID,Promakhov Vladimir,Kozhukhova NataliaORCID

Abstract

Additive technologies are widely used in various industries. However, nowadays, the large-scale implementation of these technologies in the construction industry is difficult, due to a lot of open practical and scientific questions in terms of both building mixtures and 3D printing equipment. When performing studies focused on the development of cost-effective mixtures based on readily available raw materials for building extrusion 3D printing, it was found that the final result was determined by the rheology of the building mixture, the speed of the screw, and other factors. The article studied the combined effect on the extrusion of the building mixture and the parameters of the printed track of such factors as the thickness of the layer, the linear printhead traversed velocity of the forming device, and the speed of rotation of the screw. We aimed to establish relationships between the above factors, providing an increase in the stability of the printing process and the quality of the resulting structure. To carry out the research, an experimental program and original methods were developed, involving printing in different regimes using a laboratory construction 3D printer. Based on the regression analysis of the data obtained, it was found that the process of 3D printing by extrusion methods cannot be described by a linear function. It was found that a change in the linear speed of the nozzle movement can increase the yield of the mixture, and also lead to track stretching and the degradation of some parameters. The boundary value, in this case, is the layer thickness of 0.77–0.8 of the nozzle width. The response of the system to changes in the linear printhead traversed velocity and the frequency of rotation of the screw occurs in different ways. A change in the linear printhead traversed velocity at the optimal height of the layer has a slight effect on its width. Reducing the speed of rotation of the screw leads to a decrease in the overall dynamics of the mixture flow and an increase in its viscosity due to its thixotropic nature. When the previous speed of rotation of the mixture is restored, the dynamics of the flow are restored with a noticeable delay. In general, this is recommended to ensure the highest dynamics of the printing process. For the laboratory construction 3D printer and the building mixture used in the article, the regime with the following parameters was recommended: a linear printhead traversed velocity of 900 mm/min; an extruder frequency of 25 rpm; and a relative layer thickness of 0.8 (of the nozzle width). This regime provides the optimal ratio of performance/quality and the stability of track parameters.

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3