Enhancing Open BIM Interoperability: Automated Generation of a Structural Model from an Architectural Model

Author:

Singh Tandeep1,Mahmoodian Mojtaba2,Wang Shasha1

Affiliation:

1. Department of Civil Engineering, Engineering Institute of Technology, Melbourne, WA 6005, Australia

2. School of Engineering, RMIT University, Melbourne, VIC 3000, Australia

Abstract

Building information modelling (BIM) is an appreciated technology in the field of architecture and construction management. Collaboration of information in BIM has not been fully utilized in the structural engineering stream as many engineers keep on working with previous prevailing design approaches. Failure to adequately facilitate automation in design could lead to structural defects, construction rework, or even structural clashes, with major financial implications. Given the inherent complexity of large-scale construction projects, the ‘manual design and detailing’ of structure is a challenging task and prone to human errors. Against this backdrop, this study developed a 4D building information management approach to facilitate automated structural models for professionals designing all the elements required in reinforced concrete (RC) structures like slabs, beams, and columns. The main contribution of this study is to obtain structural models directly from architecture models automatically, which reduces effort and possible errors in the previous prevailing approaches. The framework enables execution of all the model design works automatically through coding. This is achieved by executing a script which is beneficial for integrated project delivery (IPD). The 3D structural model in BIM software presented in this study extracts and transfers the geometrical data and links these data in Industry Foundation Classes (IFC) files using integration facilitated by Python 3.6 and IFCopenshell. The developed automated programme framework offers a cost-effective and accurate methodology to address the limitations and inefficiencies of traditional methods of structural modelling, which had been carried out manually. The authors have developed a novel tool to extract structural models from architectural models without proprietary software, greatly benefiting BIM managers by enhancing 3D BIM models. This advancement toward Open BIM, crucial for the architecture, engineering, and construction (AEC) industry’s future, is accessible to educators and beginners and highlights BIM’s effectiveness in improving structural analysis and productivity. The core finding of this study is to generate a structural model from an architecture model by automating the script with Python integration of IFC and IFCopenshell. The merits of the developed framework are reduced clashes, more economical structural modelling, and fully automated smart work as functions of the IPD.

Publisher

MDPI AG

Reference40 articles.

1. Viability of the BIM Manager Enduring as a Distinct Role: Association Rule Mining of Job Advertisements;Hosseini;J. Constr. Eng. Manag.,2018

2. Sustainable Infrastructure Design Framework through Integration of Rating Systems and Building Information Modeling;Liu;Adv. Civ. Eng.,2018

3. Understanding Construction Supply Chain Management;Behera;Prod. Plan. Control,2015

4. Potential for Synergetic Integration of Building Information Modelling, Blockchain and Supply Chain Management in Construction Industry;Selvanesan;J. Inf. Technol. Constr.,2023

5. BIM-Enabled Pedagogy Approach: Using BIM as an Instructional Tool in Technology Courses;Hu;J. Prof. Issues Eng. Educ. Pract.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3