Properties of Bacterial Copper Slag Concrete

Author:

Rohini I.ORCID,Padmapriya R.ORCID

Abstract

Copper ore processing generates a large amount of copper slag, which has properties that are similar to fine aggregate. Copper slag has a promising future in the construction industry as an alternative to fine aggregate. Up to 50% of fine aggregate substitutions have been successful. The performance of copper slag concrete could be improved by microbiologically induced calcium carbonate precipitation. The impact of micro-organisms on the mechanical properties and flexural behaviour of copper slag concrete was investigated in this study. Five concrete mixtures were created by replacing varying amounts of fine aggregate with copper slag, ranging from 0% to 100%. M30 grade concrete was used, and 1% to 2% of the bacterium Bacillus subtilis by weight of cement was added during the concrete casting procedure. Specimens of different shapes, such as cubes, cylinders, and prisms, were cast and examined at 7, 14, and 28 days. When treated with micro-organisms, the test results revealed that replacing 50% to 75% of the sand with copper slag produced concrete with superior mechanical properties and a greater density. With the optimal ratio of copper slag to micro-organisms, a suitable RCC beam was formed. Load–deflection patterns of bacterial copper slag concrete were used to investigate beam flexural behaviour, and the results were compared using ABAQUS modelling. Microbiologically induced calcium carbonate precipitation can alter regular copper slag concrete, resulting in enhanced concrete performance.

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Reference36 articles.

1. Utilization of Copper Slag as a Partial Replacement of FineAggregate in Concrete;Brindha;Int. J. Earth Sci. Eng.,2010

2. Assessment of Corrosion and Durability Characteristics of Copper Slag Admixed Concrete;Brindha;Int. J. Civ. Struct. Eng.,2010

3. Effect of copper slag as a fine aggregate on the properties of cement mortars and concrete;Khalifa;Constr. Build. Mater.,2011

4. Copper slag as sand replacement for high-performance concret;Cem. Concr. Compos.,2009

5. The optimum content of copper slag as a fine aggregate in high strength concrete;Wu;Mater. Des.,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3