The Development of Soil-Based 3D-Printable Mixtures: A Mix-Design Methodology and a Case Study

Author:

Daher Jana12,Kleib Joelle12,Benzerzour Mahfoud12,Abriak Nor-Edine12,Aouad Georges12ORCID

Affiliation:

1. IMT Nord Europe, Institut Mines-Télécom, Centre for Materials and Processes, F-59000 Lille, France

2. University of Lille, Institut Mines-Télécom, University Artois, Junia, ULR 4515—LGCgE—Laboratoire de Génie Civil et géoEnvironnement, F-59000 Lille, France

Abstract

Concrete 3D printing is one of the newest technologies in the field of construction. However, despite the various opportunities that this technique offers today, it still has a high environmental impact, as most 3D-printable materials contain high amounts of cement. On the other hand, due to the large volumes of soil excavated each year across the world, there is a pressing need for proper management to dispose of it or reuse it efficiently. This study aims to develop sustainable and resistant 3D-printable materials with low environmental impact using excavated soil. Firstly, a series of tests were carried out to find the most appropriate superplasticizer and the amount required to develop the printable mixtures. Next, the extrudability and buildability were evaluated and verified to validate the printability of the developed mixtures. A 3D laboratory printer was also used to validate the printability of the mixtures on a larger scale. Then, the fresh and hardened properties of the printable mixtures were investigated. Three printable mixtures were developed, with the most environmentally friendly mixture having a soil content of 1602 kg/m3 and a cement content of 282 kg/m3. The mixtures demonstrated satisfactory characteristics and properties in both fresh and hardened states. On the one hand, the mixtures were extrudable and buildable at two laboratory scales. On the other hand, the mixtures presented sufficient compressive strengths, ranging from 16 MPa to 34 MPa, despite their high soil content and low cement content. In addition, their compressive strengths were found to be higher than the minimum strength required for structural concrete. Consequently, this study highlights the possibility of developing ecological, sustainable and resistant mixtures that can be used in 3D-printing construction applications using excavated soil.

Funder

Chaire Industrielle ECOSED, IMT Nord Europe

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3